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Abstract—In Systems Theory, the Mathematical and
numerical simulation of strength of thick-wall pipe by
using static elastic problems is an important problem and
has attracted the attention of many researches,
academicians and practitioners. the The present work
studies the change in the strength of a quite long isotropic
thick-wall pipe (circular cylinder) for the varying pipe
diameter, wall thickness and material. The pipe is in the
plane deformed state, i.e. plane deformation is considered.
Based on the problems of statics of the theory of elasticity,
a mathematical model to calculate the strength of the
thick-wall pipe was developed and the problems of statics
of the theory of elasticity were set and solved analytically
in the polar coordinate system. The analytical solution was
obtained by the method of separation of variables, which is
presented by two harmonious functions. The dependence
of the pipe strength on the thickness and material of the
pipe wall, when (a) normal stress is applied to the internal
boundary (internal pressure) and external boundary is
free from stresses and (b) normal stress is applied to the
external boundary (external pressure) and the internal
boundary is free from stresses, is studied. In particular, the
minimum thicknesses of the walls of homogeneous
isotropic circular cylinders of different materials and
diameters with a plane deformed mode when the pressures
in the cylinders do not exceed the admissible values were
identified. Some numerical results are presented as tables,
graphs and relevant consideration.

Keywords— Applied Systems Theory, homogeneous
isotropic thick-wall pipe, modeling of strength of thick-
wall pipe, separation variables method, static elastic
problems.
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[. INTRODUCTION

Theory, the Mathematical
simulation of strength of thick-wall pipe by using static elastic

In Systems and numerical
problems is an important problem and has attracted the
attention of many researches, academicians and practitioners.
As it is known, all solid bodies have some or other property of
strength and rigidity, i.e. the property supporting the body to
maintain its unity and sizes under the action of external forces
acting on it within certain limits. The study of the strength and
stability of a thick-walled pipe under the impact of external
forces may be considered as a classical problem of mechanics.
The methods of the strength of materials are used to do
practical calculations and identify the necessary, as they call,
reliable sizes of the parts of the machines and various building
structures. The methods of the theory of elasticity to calculate
the strength and stability of some or other structure are also
used commonly. Despite this, it is the study of the static
problems of the theory of elasticity allowing obtaining a
comprehensive mathematical model to calculate the strength of
a thick-walled pipe (circular cylinder).

Thick-walled pipes are often used in many different
branches of industry and they are often under internal pressure
or external load. By varying the pipe parameters, the optimal
values of parameters (diameter, wall thickness and elastic
properties), due to which the pipe does not disintegrate (is not
cracked), will be selected.

Many researchers have considered different problems for a
thick-walled cylinder [1-11]. In paper [1], a simplified closed-
form solution has been obtained for hollow cylinders subjected
to loads symmetrically distributed about an axis of the cross-
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section, acting in the radial direction over part of the
circumference. Article [2] studies the behavior of rotating
thick-walled cylinders made of rubber-like materials. In work
[3], the authors consider the influence of the parameters of
geometrical shape and properties of the materials on the limit
load of a thick-walled cylinder. High internal pressures in a
thick-walled cylinder produce great stresses on the internal
surface of the cylinder. Therefore, the analysis of a thick-
walled cylinder under the impact of high internal pressure, in
particular, the identification of the stress concentration
coefficient in a cylinder with and without pressure, is topical
[4]. Work [5] studies the influence of pressure and
deformation on creep stresses in a thick-walled cylinder, which
is made up of functionally graded material and is subjected to
twisting. The problems of thick-walled round cylinders under
internal pressure has been discussed by many authors [6-11]
for the theory of isotropic plasticity and creep.

The present paper studies the dependence of the strength of
quite a long thick-walled circular cylinder on the wall
thickness and material (elastic properties). In particular, the
minimum thicknesses of the walls of the cylinders made up of
various homogeneous isotropic materials (for example: steel,
copper, aluminum and grey cast iron) and of different
diameters (3 cm, 5 cm and 10 cm)
deformation, with which the stresses in the cylinders do not
exceed the admissible values, is identified.

in the state of plane

In order to solve the boundary value and boundary-contact
problems for the regions with a curvilinear boundary, it is
feasible to consider these problems in a appropriate curvilinear
coordinate system. For instance, the problems for the regions
bounded with a circle or its parts are considered in a polar
coordinate system [2-15] for the areas bounded with an ellipse,
hyperbola or their parts, the problems are considered in an
elliptic coordinate system [16-25]; for the areas bounded with
a parabola or its parts, they are considered in a parabolic
coordinate system [26,27], while for the areas bounded with
eccentric circles, the problems are considered in a bipolar
coordinate system [28-30]. Thus, the boundary value problems
for a circular cylinder in the state of plane deformation are
considered in a polar coordinate system.

The second section of the present article gives a system of
equilibrium equations of elastic plane deformation state in a
circular cylindrical coordinate system, Hook’s Law and posing
the problems.

In the third section, by using the method of separation of
variables, an analytical solution of one of the posed problems
is obtained, which is presented as two harmonic functions.

The fourth section gives the numerical simulation and
graphs with relevant explanations. The numerical results and
appropriate graphics are obtained by using MATLAB software

And finally, the fifth section (the Conclusion) gives the main
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results given in the present work and prospects of their use in
practice.

II. EQUATIONS OF ELASTIC PLANE DEFORMED STATE IN
CIRCULAR CYLINDRICAL COORDINATE SYSTEM AND POSING
BOUNDARY-VALUE PROBLEMS
In case of absence of volume forces, the equilibrium equations
of elastic plane deformed state are given as follows in a

circular cylindrical coordinate system [31]:

R”+1R”+—R'——A”’ =0,
N rr
1
1 2R, )

a,a

—A  +R  + =0,
r ’ r

where R.A.Z, are normal stresses and

R,=A.,A =Z_,R,=Z, are tangential stresses.

When writing down equations (1), it is considered that the

stresses and  deformations in the elastic area

Q= {I’I <r<rn0<a<2rl0<z< Z]} under consideration do
not change along coordinate z . In this case, when z=0 and
z=17, the
w=0,7Z =0,Z, =0, where Ww

following conditions must be true:

is the component of
vector U along coordinate z ( z, is any positive number).

Thus, we have a plane deformed state when there remain
only radial u(r,a) and circular V(r,a) components of three
components of vector U and normal stressesR,A,  and
tangential stress R of the stress tensor components.

The stresses are expressed with the following equations by
means of displacements [32]:

R,:ﬂ(u,+£+lvaj+2yu,,
T :

Aa:ﬂ(ur+g+lvaj+2y[lva+ﬂ} 2)
ror r o
(o)
R, =pv,——+—U,
rr

Here A ), where E is modulus

E
B () () R (e
of elasticity and v is Poisson’s ratio.
By virtue of the symmetry principle, finally the problem

will be posed for quarter of circular ring Q:

Q= Jtrl <r<r,0<a< g} . Due to the plane deformation,

there is no third dimension in Q area.
Let us write down the boundary conditions for the quarter
of a circular ring:
T

a=0, a=—:

S V=0 A=0&v=0,u,=0, 3)
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r=r

=1,

k=12: a) R =F%(a),

“4)

It is implied that F%(e), F%(c) functions, together with

FY(a), functions,
together with their first and second order derivatives,
decompose into absolute and uniformly convergent Fourier

trigonometric series.

Let us consider one of the posed problems, e.g. problem (1),
(3), (4a). Other problems can be solved similarly.

their first order derivatives, and Fz(lk )(a),

III. SOLVING PROBLEM (1), (3), (4a)
Let us consider a plane deformed homogeneous isotropic
cylinder with r internal radius and r, external radius. For
let us assume that the cylinder is loaded
internal  p, (a) and external pz(a)
stresses. Let us imply that the cylinder is quite long for stress
Z ,to be distributed equally across the cross section and the

generality,
simultaneously with

influence of the cylinder bed on the radial displacement is very
small. Besides, we consider the case whenZ =0.

Mathematically, this problem is described with formulae (1),
(2), (3), (4a). So, we must find the solution of the system of

equilibrium equations (1) in Q= {I’l <r<r,0<a< %} area,

which satisfies (3), (4a) boundary conditions. We can give the
numerical realization of the given problem based on the
solutions obtained by using two methods (analytical solution
obtained with a method of separation of variables and Lamé
solution).

A. Obtaining Analytical Solutions by Using the Method of
Separation of Variables
In case of absence of volume forces, a system of equilibrium
equations written in polar coordinates is obtained as a result of
projecting a known differential equation of the equilibrium of
body [33]

(/1 +2 y)grad divU — urot rotU =0on the coordinate axes of

a homogeneous elastic isotropic

polar r, o coordinate system. The given system of

equilibrium equations can be written down by using functions
K,B,u, v as follows:

K

(a) rK,-B_=0,
' | r A+2u

1
©) u»r+E+—v =
L ;
v 1 B )
(b) 1B, +K_ =0, (d) v,.+———u, =—,
’ ’ ’ r r - U
where

5 1 v I u 1
B=B,=rot,U=v, ——u, +—, K=divU =u, +—+—-v,_.
Trtor roro

Theorem 1 In the class of regular functions, the general
solution of system (5) for the considered class of boundary
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value problems of the theory of elasticity is presented by
means of two ¢, and ¢, harmonic functions as follows:

A-u
3 2
u = r (pl,rr + r (p].r +¢Z,r’

A+u ©)
. 2(A+2u) 1
v=r D1 + rt/)l,a +_¢2,a’
A+u r

where (see Appendix C)

- ) B sin(ka) X ok | B aka sin(klnl’)

+a,alnr+b,Inr+c,a+d,, i=12.

i0?

Proof Let us satisfy equation (5b) identically:

K=rlrp),. B=—rp), . ®)
where ¢, is a harmonic function. It is easy to show that
(I’(ol ),r is harmonic (Appendix A), i.e. A(rcﬂ),, =0.

Let us insert (8) in (5¢) and (5d). We will obtain:

u +94ly o r(re,)
N r r a ﬂ, + ZIU 401 2
. ©
9 -(u-Le0), ) =0
;l'l a
Let us satisfy second equation of (9) identically:
| ~ T
V=—0,,, u :¢z,r+_(r¢1),r‘ (10)
r u

Let us insert (10) in the first equation of (9). Following
simple transformations, we will obtain:

A+u 2
——r(rp,). —=(rg)..
ﬂ(ﬂ"‘zﬂ) ( (pl ),rr Iu( (p] ),r
By considering the proved formulas in Appendix B, we

Ag;z ==

will obtain:

~ A+u ) 2
Ap. =———1m— _= .
¢)z #(/1_’_2#)([- Ql.r ),r #(r¢l),r’
~ A+u r’
A R —o@ [=0;
(¢2 + 4/1(1_’_2/1)" (rol,r + 2# q’]] s
5o ATH o T
502 _(Dz 4#(24_2#)[- (01; 2# 5013
where Ap, =0.
Let us take o, =—M(A, then
A+u
~ . 2aw2u) 2(2+2p)
Q, =@, +I'p, +————=r"@,, where —:4(1—1/).
: A+u A+

Following some elementary transformations, we will
finally obtain (6), i.e. theorem 1 is proved.

After inserting (6) in (2) and doing simple transformations,
the stress tensor components will be written down as follows:

1348



INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING

DOI: 10.46300/9106.2021.15.145

R =(A+2u)p,, +Arp,,,

S +11Au +4u° 204 +2
REZRRLTL TN (Lo T) I
A+u ' |
3A +Au -4’
+ # r¢)],r + 2:u¢2,rr ’
A+u
Aa = ﬂ’r:‘q)l,rrr + (ﬂ' + 2:u)r¢l,ruu (1 1)
S 45 +2u° 22 +2u)
+ r 1rr lLaa
A+u ' A+u ’
A—u)\34+2 2 2
+wr(ol.r +_/2J(pz,zm +_’u¢2,r9
A+u r r
2u 2u
Ra = 2:ur2¢],rra + 4/ur¢1,ra +T¢Z,m _7¢2,a'

By considering condition (3), expression (7) will be
formulated as follows:

@, =Inrb, + iu A (%J" +B, (%jnJCOS(na)|, i=12,n=2k(12)

After inserting (12) in (6) and (11), the following
expressions for displacements will be obtained:

24y Ly
A+u r

" 2‘”{{" - ,12:1:]

u=

rY 2u YrY
— +r{n+ 41 B
(L] ans 2|2,

(13)

1(rY 1(rY :
B ——|L|B na), n=2k.

And the following expressions will be obtained for stresses:

2u
~—b
r 20

Rr:_4ﬂblo_ 2
+i{zm[n(n—1)—2{ﬂ A, +2,un[n(n+1)—2(£r‘jn81k

2

+24n(n— l)rLZErL) A, +2un(n+ l)ri(ir‘j BEk}cos(na),

2
Aa = _4/ub10 + r_tlbzo

+ i{—Zn[m(n +3)+ w}[LJ A,

A+u r,

2 2 n
+ 2n|:lun(n — 3)+M}(ij B]k
A+u r

(14)

_ 2yn(n - l)ri,(rLJ A, - Zyn(n + l)rl—,(%Jn B,, }cos(na),

2
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0 r n rl n
R = Z—zyn[n(nﬂ{r—J A, +n(n —I{FJ B,

k=1 )

r

+(n—1)r1—2[ r J"AA ~(n +1)%[gj” BZk}m(na), no 2k

From boundary conditions (4a), an infinite system of linear
algebraic  equations to unknown coefficientsb,, b

10° 202
A, B, (i=12, k=1.2,...) will be obtained.

2
_4/le10 _r_tlbzo

1

Z r) 1(rY 1
+ z I:L{_]] Alk+LZBlk+L3_2(_IJ Azk+L4_szk]
k=1 r, r-\r I,

1 2 1

-cos(na)=F"(a),

11

. r 1(rY 1
e [_ an{é] Alk _nL3B]k _Ls?[r_;] Azk +L4FszJ

-sin(na)= FY(a).

2
_4/'lb10__/jb20
r,
S r) 1 1(rY
+z LlAlk+L2 -+ Blk+L3_2A2k+L4_2 - sz (15)
pa r, r, rr

. r) 1 1(rY
_nLAAlk _an[_l B]k _Ls_zAzk +L4_2 -+ sz
k=1 r, r, r 2

Here:

L =2wm[n(n-1)-2} L, =2sn[n(n+1)-2] L =2m(n-1),
L, =2:n(n+1), n=2k.

After decomposing the functions on the right side of equations
(15) into Fourier trigonometric series, as a result of equating
the expressions at the same trigonometric functions in both
sides of the equations, an infinite system of linear algebraic
equations will be obtained. The principal matrix of such a
system is a block-diagonal one (See Fig. 1). Block D, is

2x2- and blocks D, i=23,... are

matrixes and the relevant determinants differ from zero.

4 x4 -dimensional
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E

1

\

\ Y,

Fig. 1. Plan of the principal matrix of the infinite system of
equations (15)

B. Lameé problem solution

For generality, let us assume that a thick-walled cylinder is
loaded  with  internal ~ p, =constant and external
p, = constant forces at the same time. In this case, both, the
deformations and stress distribution will be symmetrical, as
any radial section is a plane of symmetry and therefore, there
are no tangential stresses on these sections, i.e. A =R =0.
The problem to determine displacements and stresses in a

thick-walled cylinder is known as Lamé problem, which
gained the solution of this problem [33-35].

Fig. 2. Plan of load on the cross section of a plane deformed
thick-walled circular cylinder

— l_ﬂ plrlz_ pzrz2 I'+1+ﬂ rlzrz2 p—p,

u . (16)
E r’-r’ E r r’-r
2 2 2,2
R = Ph = P.h _ L p-p
r rzz_rlz r? rzz_rlz ? (17)
2 2 2,2
A = pf—P.h +r1r2 |
« r>_r? r? rz_rz’

2 1 2 1

IV. NUMERICAL SIMULATION AND CONSIDERATION OF
RESULTS

The present section gives the results of the calculation of a
thick-walled circular homogeneous isotropic body under the
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impact of internal pressure or external forces on strength. The
strength calculation of a cylinder implies determining the
minimum thicknesses of the walls of the thick-walled pipes of
different materials and different diameters when the stresses in
the body do not exceed the admissible value [34,35], i.e. when
the pipe will not disintegrate (is not cracked). So, the
numerical results of the boundary-value problems given here
and relevant graphs for the quarter circular ring when (1)
constant normal load is given on the internal boundary and the
external boundary is free from loads, (2) constant normal load
is given on the external boundary and internal boundary is
free from loads. Thus, the dependence of the strength of a
plane deformed thick-walled circular cylinder on the thickness
and material of the wall (elastic properties) is studied. Its
relevant numerical solutions are obtained based on (a) the
analytical solution obtained with the method of separation of
variables (See formulas (13) and (14)) and (b) Lamé solution
(See formulas (16), (17)).

Note. As Lamé solutions are obtained for the cylinders under
constant normal load, in order to compare the numerical
results obtained by using analytical and numerical methods
with the numerical results based on Lamé solutions, the
numerical and visual realization is done for the cylinder under
constant normal load.

As it is known, a cylinder is called a thick-walled one, for
which the ratio of its wall thickness with its internal diameter

. 10
is no less that 1/20. Therefore, we must take 0<r, < m r,. We

will have the variation of the wall thickness, if we fix r, and

10 .
confer r values from range 0<r, Sﬁrz' The numerical

values are  obtained for the following  data:

r,=1.5cm, 2.5cm, 5cm, p =—100kg /cm?, and
E=2-10°kg/cm*, v=0.3 for steel, E=1.1-10°kg/cm?,
E=0.7-10°kg/cm*, v=0.34 for
aluminum and E=0.7-10°kg/cm?, v=0.25 for grey cast

v=0.32 for copper,

iron.

A. Strength calculation for a thick-walled cylinder under
the impact of internal pressure

insert F](l‘)(a):—p, F](zl)(a)zo, F](f)(a)zo,
F(z)(a)zo in formulas (15). We will obtain the following

12

Let us

system of equations in relation to b, b,,, A, and B, :

2u
_4,Ub|0_r_zb20 =-p,
1

rY 1(rY 1
_nL4£r_lJ Alk _nL3Blk _L3 F[_IJ Azk +L4_szk =09

2 1
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2u
_4;Ub10_?b20 =0,
2
r n 1 1 r n
_nL4A1k _an(_lJ Blk - L3 _zAzk + L4 T(_IJ sz =0,
r, r, IANE

Here:

L =2wm[n(n-1)-2] L, =2un[n(n+1)-2]

L =2um(n-1), L,:=2(n+1), n=2k.
From here:
b,=—— Py PO
4yi r;—r’ ) 2yirj -r’ ) (18)
A =0, B, =0, i=12 k=12,...

After inserting expression (18) in equations (13) and (14),
the following expressions will be obtained:

yo_ Lopop U lprn (19)
2(/1"_#) rz2 _rlz 2# r rz2 _rlz
R__ PO P
r rzz_rlz rz rzz_rlz’
pr_, 1 prr
A = — s 20
a r22_r12 rZ r2Z_r.lz ( )
R, =0.

Displacements and stresses at any point of the considered
area are obtained from equations (19) and (20).
If in in (16), (17), we take
p,=p, p,=0, then expressions (16), (17) will be given as
(19) and (20).
By using (16), (17) formulas, or (19) and (20) formulas, we
obtain the minimum wall thickness of a circular steel, copper,

Lamé solutions,

aluminum and grey cast iron rings (i.e. of a circular cylinder
wall), at which the stresses produced in the body do not exceed
admissible values, when r,=1,5; 2,5; 5 cm. The obtained
numerical values are presented in table 1.

TABIE I. Minimum admissible thicknesses of a cylinder wall
at which the stresses produced in the cylinders of different
materials and diameters do not exceed admissible values
(internal load)

Minimum admissible wall Admiss
Material thickness (r2-r1) E, ; ible
r=1,5cm | r:=2,5cm | r>=5cm Kg/cm? stress,
Kg/cm?
Steel 0.1813636| 0.3022727| 0.6545455 | 2-10° 0.3 | 713.801
Copper | 0.2263636 0.3772727| 0.7545455 | 1.1-10¢ | 0.32| 611.830
Aluminum| 0.2713636( 0.4522727| 0.8545455 | 0.7-10¢ | 0.34| 509.858
Grey 0.2713636| 0.4522727| 0.8545455 | 0.7-10° | 0.25| 509.858
cast
iron

E-ISSN: 1998-4464

1351

Volume 15, 2021

Plot graphs of A N for tiknes=0.1363636
1060

—%— sleel
—%— copper
1040 aluminum

—3<— grey castiron

1020

< 1000
980
960
940
1.36 1.38 14 1.42 1.44 1.46 148 1.5
r
(a)
Plot graphs of A . for tiknes=0.3163636
410 z
—s%— steel
—— copper
420 alurrinum
—— grey castiron
400
S
=
360
360
340
320
1.15 12 125 13 1.35 14 145 1.5
r
Plot graphs of A N for tiknes=0.5413636
240
—%— steel
—#— copper
220 alurrinum
—— grey castiron
200
< 130
160
140
120
09 1 11 12 13 14 15
r
(©)
Plot graphs of A R for tiknes=0.7663636
180
—s— steel
—#— copper
160 aluminum
—— grey castiron
140
< 120

100

60
o7

(d)
Fig. 3. Shearing stresses A, along the radii of the walls of steel,

copper, aluminum and grey iron circular pipes when the
thickness of each wall is approximately: a) 0,136 cm, b) 0, 316
cm, ¢) 0,541 cm and d) 0,766 cm (1, =15 and internal
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Fig.7. Normal stresses R, along the radii of the walls of steel,
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Fig.6. Shearing stresses A, along the radii of the walls of steel,
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thickness of each wall is approximately: a) 0,227 cm, b) 0, 527
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thickness of each wall is approximately: a) 0,227 cm, b) 0, 527
cm, ¢) 0,902 cm and d) 1,277 cm (1, = 2,5 and internal

pressure)
pressure)
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B. Strength calculation of a cylinder under the impact of
external forces

Fl(zl)(a) = 0’ F1(12) (a) =-p,
F?(@)=0 in formulas (15). We will gain the following

Let us insert F"(a)=0,

Volume 15, 2021

TABLE II. Minimum admissible thickness of a cylinder wall
at which the stresses produced in the cylinders of different
materials and diameters do not exceed admissible values
(external load)

12 Minimum admissible wall thickness Admiss
system of equations to b, b,,, A, and B, : ) (r2-r1), cm E, ible
Material | v
2/1 r:=1.5cm r=2.5cm r=5cm Kg/em stress,
—4ub,——=Db,, =0 Kg/cm?
2 20 >
1 Steel 0.2263636 | 0.3772727 | 0.7545455 PR-10° 0.3 [713.801
r " 1(r " 1 Copper 0.2713636 | 0.4522727 | 0.8545455 |1.1-10° 0.32 611.830
—nL, r_l Ac-nLB -L—= r_l Ay + L7 By =0, Aluminum| 03163636 | 0.5272727 | 1054545 0.7-105 [0.34 509.858
2 ! 2 ! Grey cast| 0.3163636 | 0.5272727 | 1.054545 [0.7-10¢ 0.25 [509.858
2u iron
_4ﬂb10__2b20 =-p,
r2 Plot graphs of A R for tiknes=0.1363636
-1040
r 1 1(r - y
- nL4Ak - nl—3 —_ Blk - I_1 - Azk + I_4 | = sz = 0, 1060 +alum\nu§1
r r 2l gre castron
2 2 2 2
k=12,..., n=2k, o
< 1100
where: L = 2/m[n(n - 1)—2], L, = 2m[n(n + 1)— 2], o
L =2um(n-1), L,:=2m(n+1), n=2k.
-1140
From here:
b — prf e 1 14 142 144 146 148 15
o — m= r
M\ -1
a
przrz Plot graph fg )f tiknes=0.3163636
b —_ 1 2 . (21) 0 o1 ra s of n or tiknes=0..
U2l ) —=
A =0, B, =0, i=12, k=12,.... A I B P
2/1 -460
Aa = _4:ub10 + 7 bzo < a0
After inserting expression (21) in equations (13) and (14), a0
the following expressions are obtained:
-520
1 r; 11 pr’r}
= 2p : 2 5 E l 22 : (22) 540
2(14—/,[) rn—n 2/,lrr2 - RERT 12 128 13 rwaa 14 145 15
r2 rZrZ
Rr:_ 2p22+122 2p29 (b)
= r-rn-—n Plot graphs of A _for tiknes=0.5413636
-220
2 202 e
A=t LBRL (23) ol |
rz _rl r rz _rl —s— grey cast iron
Ra =0. 260
Displacements and stresses at any point of the considered <
area are obtained from equations (22) and (23).
If we take p, =0, p,=p in (16), (17), then expressions 0
(16), (17) will be given as (22) and (23). a0
By using (16), (17) formulas, or formulas (22) and (23), we .
obtain the minimum wall thickness of a circular steel, copper, e ; "
aluminum and grey cast iron ring, at which the stresses ©)
produced in the body do not exceed the admissible value,
when r,=1.5,25,5. The obtained numerical values are
presented in table 2.
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Fig. 20 Normal displacements U along the radii of the walls
of steel, copper, aluminum and grey iron circular pipes when
the thickness of each wall is approximately: a) 0,454 cm, b) 0,
854 cm, ¢) 1,354 cm and d) 1,854 cm ( 1, =5 and external

pressure)

C. Consideration of results

As it was expected and as the tables show, the minimum
admissible wall thickness of a steel pipe (cylinder) is less than
that of a copper pipe, while the minimum admissible wall
thickness of a copper pipe is even less than that of an
aluminum pipe. As the Young modulus values for aluminum
and grey cast iron are the same, the minimum admissible
thicknesses of their walls are also the same. It should also be
noted that the greater the pipe diameter is, the more the
minimum admissible wall thickness is.

The tables show the minimum thicknesses of a ring
(cylinder wall), when the stresses produced in the pipe of
different materials (steel, copper, aluminum and grey cast iron)
and different diameters (3 cm, 5 cm and 10 cm) do not exceed
the relevant admissible values, when (1) constant normal stress
is applied to the internal boundary of a ring and the external
boundary is free from stresses (Table 1), or (2) constant
normal stress is applied to the external boundary and the
internal boundary is free from stress (Table 2). These tables
show that the minimum admissible pipe wall thickness with the
loaded internal boundary is less than with the loaded external
boundary.

Normal and shearing stresses and normal displacements along
the radius in different-thickness walls of steel, copper,
aluminum and grey iron pipes under the influence of internal
pressures are given in Fig. 4 — Fig 10 and external pressures
are given in Fig. 11 — Fig. 18. The obtained numerical results
and relevant graphs give the following picture: (a) the
pressures and displacements decrease as the wall thickness
increases, and (b) in the case considered in the given article
(i.e. under the permanent normal load), the pressures do not
depend on the material (elastic properties) what is also seen
from the formulas, in particular, see (17), while greatest
displacements are seen with grey iron pipes and the smallest
ones are seen with aluminum pipes, (c) normal displacements
are greater in case of external pressure than with internal
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pressure, (d) in case of internal pressure, shearing stresses
have a positive direction (positive numerical value), while in
case of external pressure, they have a negative direction
(negative value).

V. CONCLUSION
In Systems Theory, the Mathematical
simulation of strength of thick-wall pipe by using static elastic
problems is an important problem and has attracted the

and numerical

attention of many researches, academicians and practitioners.
The principle results presented in the present work can be
formulated as follows:

e The strength of quite a long homogeneous isotropic
thick-walled circular pipe (cylinder) under the impact
of external forces (internal or external pressure) by
using the problems of statics of the theory of
elasticity is studied. Plane deformation is considered.

e Mathematical and numerical modeling is provided to
study the strength of a thick-walled circular pipe
under the impact of external forces (internal or
external pressure) by using the problems of statics of
the theory of elasticity.

e The problems of statics of the theory of elasticity are
set and solved in the polar coordinate system.

e An analytical solution is obtained by using the method
of separation of variables, which is presented as two
harmonic functions.

e Some numerical results are given and considered and
graphs of normal and shearing stresses and normal
displacements along the radii in the walls with
different thicknesses of steel, copper, aluminum and
grey iron pipes under the influence of internal and
external pressures are drafted.

e The minimum wall thicknesses of the pipes of different
materials (steel, copper, aluminum and grey cast iron
namely) and diameters (3 cm, 5 cm and 10 cm
namely), when the values of stresses originated in
them do not exceed the admissible values, are
identified.

A cylindrical vessel under the impact of stress is often used
as a component in such branches of industry as chemical,
military and oil industries and water and nuclear power plants.
These components are often subject to a complex load, such as
twisting, pressure, temperature, etc. The circular cylinders
(pipes) are also widely used in building, machine building, etc.
Therefore, the study of the deflected mode of the cylindrical
bodies is topical and so, in my opinion, setting the problems
considered in the present work and the method of their
solution is interesting in a practical view.
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APPENDIX A
Theorem 2 If function ¢ is harmonic, then (rg), is a

harmonic function.

Proof  Let us assume thatA@p=0. We must prove that

L= A(r(p,r + (p) =0. So, we must prove that:

(is a Laplace operator), i.e.

L = rerr +3¢,rr +%¢r +%¢,ma = O

As A@p=0, then I’(Ago),,=0; r[(p"+l(pr+i2(pm] =0.
LA IR

r

ie.
1 1 2
Qe+ P == P+ =P =5 P = 0. (A.D)
r r r
Let us write down operator L as follows:
1 2 1
L= 1P+ P =L P 200+ T F L P
(A.2)

2 2
+ r_zgo.wz _F¢,(1a = 0

The underlined members in (A.2), by the virtue of (A.1),
give zero, while other three members give a Laplace operator,
which equals to Thus, L=0, 1.e.
Alrg), = A(r(gr +(p)= 0, i.e. (re), is harmonic. Thus, the

Z€10.

theorem is proved.

APPENDIX B: PROVING SOME FORMULAS
Let us assume that ¢ is a harmonic function, i.e. Ap=0.1tis
easy to prove that:

1) r(rwl ).rr = (rzq)l»" )r ;

4
r3

3) (FPp,) =4 Zco,J

Proof

1) rx, +r(rg,), =2rg, +r'g, =(Fg, )

2)

Ar—2 1L +r +r—2 +l
4(0 240 P, 4(4" 2€0

Loty —prrp =(rp),
4_,( 4 aa W \r

The sum of the underlined members is a Laplace operator in a
polar coordinate system and as ¢ is a harmonic function, it

equals to zero.

3 2

3)Ar3 _r +3r2 + + +r ;
4 q),r 4 (p,r 2 er 4 go,rrr 4 Qn« 4§0,ra{1 >
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r3
X(A(p)r =0 as Ap=0.
r_S(A ) = ﬁ + l + L = ﬁ + ﬁ — L
4 ¢ r 4 w,rr r w,r rz q).ua 4 q),rrr 4 w‘rr 4 (p,f
r
+— -— =0.
4 (o,ras 2 (o,aa

By considering this, we will gain:

A r_3 = ﬂ +£ +l
4 ?, 2 2 > P z‘ﬂ,aa

l4rp, +2r°0, )+ (Fp, +r0, +0,, )=

1
2
=2rp, +r'p, = (rz% )‘,'

This is what we wanted to prove.

APPENDIX C: SOLVING LAPLACE EQUATIONS IN A POLAR
COORDINATE SYSTEM

Let us solve the following equation:
1 1

(p,rr+F(p,r+r_2¢,aa =0 (Cl)

Let us try to find the solution as follows:
p=R(r)A(a). (C2)
After inserting (C.2) in (C.1), we will obtain:
r’ R +r LS + A 0
R A
Let us consider two cases:
1)
rzR—+r5 =k*, A —k*, k is a real number (the
R R A

imaginary case is deduced to the real one).
r’R"+rR' -k’R=0;
R=Ar“+Br*+C,Inr+D,;

A"+k’A=0;
A=a, sin(ka)+hb, cos(ka)+a,a+b,.
2)
rzR—+r5:—k2, i:k2
R R A

rR"+rR'+k’R=0;
R =4, sin(kIn I’))+6k cos(kInr)+ C,Inr+D,;

A -K*A=0;
A=Ae“+Be* +aa+b,.
B sin(ka) ~ ~ sin(klnr)
— k B k ak B ka
4 (A‘r RS )cos(ka)Jr(A‘e TEe )cos(klnr) (C3)

+a,alnr+b Inr+c+d,.
If doing operation re, +¢ for (C.3), the generality will not be

violated. If we do the same operation for the first summand of
expression ¢ , we will gain the summand of the same type, as
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the differentiation with r will not change its type. As a result
of differentiating the second summand with r (the expression
in brackets does not depend on r ) sin(kInr) and cos(kInr)

yield 5cos(k Inr) and —Ksin(k Inr), consequently, r will be
r r

cancelled, K is constant and will be included in the
coefficients. As for other summands, they will be obtained by
operation ¢, while r(‘),r will give a,a and bya , which will
be united with ¢, and d,. Thus, neither of the members in
expression ¢ is lost or changes its type. So, if we do operation

ro, + ¢ for this sum, the generality will be maintained.
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