
 

 

 
Abstract—In Systems Theory, the Mathematical and 

numerical simulation of strength of thick-wall pipe by 

using static elastic problems is an important problem and 

has attracted the attention of many researches, 

academicians and practitioners.  the The present work 

studies the change in the strength of a quite long isotropic 

thick-wall pipe (circular cylinder) for the varying pipe 

diameter, wall thickness and material. The pipe is in the 

plane deformed state, i.e. plane deformation is considered.  

Based on the problems of statics of the theory of elasticity, 

a mathematical model to calculate the strength of the 

thick-wall pipe was developed and the problems of statics 

of the theory of elasticity were set and solved analytically 

in the polar coordinate system. The analytical solution was 

obtained by the method of separation of variables, which is 

presented by two harmonious functions. The dependence 

of the pipe strength on the thickness and material of the 

pipe wall, when (a) normal stress is applied to the internal 

boundary (internal pressure) and external boundary is 

free from stresses and (b) normal stress is applied to the 

external boundary (external pressure) and the internal 

boundary is free from stresses, is studied. In particular, the 

minimum thicknesses of the walls of homogeneous 

isotropic circular cylinders of different materials and 

diameters with a plane deformed mode when the pressures 

in the cylinders do not exceed the admissible values were 

identified. Some numerical results are presented as tables, 

graphs and relevant consideration. 

 

Keywords— Applied Systems Theory, homogeneous 

isotropic thick-wall pipe, modeling of strength of thick-

wall pipe, separation variables method, static elastic 

problems. 

 
 

I. INTRODUCTION 
In Systems Theory, the Mathematical and numerical 
simulation of strength of thick-wall pipe by using static elastic 
problems is an important problem and has attracted the 
attention of many researches, academicians and practitioners. 
As it is known, all solid bodies have some or other property of 
strength and rigidity, i.e. the property supporting the body to 
maintain its unity and sizes under the action of external forces 
acting on it within certain limits. The study of the strength and 
stability of a thick-walled pipe under the impact of external 
forces may be considered as a classical problem of mechanics. 
The methods of the strength of materials are used to do 
practical calculations and identify the necessary, as they call, 
reliable sizes of the parts of the machines and various building 
structures. The methods of the theory of elasticity to calculate 
the strength and stability of some or other structure are also 
used commonly. Despite this, it is the study of the static 
problems of the theory of elasticity allowing obtaining a 
comprehensive mathematical model to calculate the strength of 
a thick-walled pipe (circular cylinder).  

Thick-walled pipes are often used in many different 
branches of industry and they are often under internal pressure 
or external load. By varying the pipe parameters, the optimal 
values of parameters (diameter, wall thickness and elastic 
properties), due to which the pipe does not disintegrate (is not 
cracked), will be selected.  

Many researchers have considered different problems for a 
thick-walled cylinder [1-11]. In paper [1], a simplified closed-
form solution has been obtained for hollow cylinders subjected 
to loads symmetrically distributed about an axis of the cross-
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section, acting in the radial direction over part of the 
circumference. Article [2] studies the behavior of rotating 
thick-walled cylinders made of rubber-like materials. In work 
[3], the authors consider the influence of the parameters of 
geometrical shape and properties of the materials on the limit 
load of a thick-walled cylinder. High internal pressures in a 
thick-walled cylinder produce great stresses on the internal 
surface of the cylinder. Therefore, the analysis of a thick-
walled cylinder under the impact of high internal pressure, in 
particular, the identification of the stress concentration 
coefficient in a cylinder with and without pressure, is topical 
[4]. Work [5] studies the influence of pressure and 
deformation on creep stresses in a thick-walled cylinder, which 
is made up of functionally graded material and is subjected to 
twisting. The problems of thick-walled round cylinders under 
internal pressure has been discussed by many authors [6-11] 
for the theory of isotropic plasticity and creep.  

The present paper studies the dependence of the strength of 
quite a long thick-walled circular cylinder on the wall 
thickness and material (elastic properties). In particular, the 
minimum thicknesses of the walls of the cylinders made up of 
various homogeneous isotropic materials (for example: steel, 
copper, aluminum and grey cast iron) and of different 
diameters (3 cm, 5 cm and 10 cm)  in the state of plane 
deformation, with which the stresses in the cylinders do not 
exceed the admissible values, is identified.  

In order to solve the boundary value and boundary-contact 
problems for the regions with a curvilinear boundary, it is 
feasible to consider these problems in a appropriate curvilinear 
coordinate system. For instance, the problems for the regions 
bounded with a circle or its parts are considered in a polar 
coordinate system [2-15] for the areas bounded with an ellipse, 
hyperbola or their parts, the problems are considered in an 
elliptic coordinate system [16-25]; for the areas bounded with 
a parabola or its parts, they are considered in a parabolic 
coordinate system [26,27], while for the areas bounded with 
eccentric circles, the problems are considered in a bipolar 
coordinate system [28-30]. Thus, the boundary value problems 
for a circular cylinder in the state of plane deformation are 
considered in a polar coordinate system. 

The second section of the present article gives a system of 
equilibrium equations of elastic plane deformation state in a 
circular cylindrical coordinate system, Hook’s Law and posing 
the problems. 

In the third section, by using the method of separation of 
variables, an analytical solution of one of the posed problems 
is obtained, which is presented as two harmonic functions.  

The fourth section gives the numerical simulation and 
graphs with relevant explanations. The numerical results and 
appropriate graphics are obtained by using MATLAB software 

And finally, the fifth section (the Conclusion) gives the main 

results given in the present work and prospects of their use in 
practice. 

II. EQUATIONS OF ELASTIC PLANE DEFORMED STATE IN 
CIRCULAR CYLINDRICAL COORDINATE SYSTEM AND POSING 

BOUNDARY-VALUE PROBLEMS 
In case of absence of volume forces, the equilibrium equations 
of elastic plane deformed state are given as follows in a 
circular cylindrical coordinate system [31]: 
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where 
zr

ZAR ,,


 are normal stresses and 

rzzr
ZRZAAR  ,,


 are tangential stresses.  

When writing down equations (1), it is considered that the 
stresses and deformations in the elastic area 

 121 0,20,~
zzrrr    under consideration do 

not change along coordinate z . In this case, when 0z  and 

1zz  , the following conditions must be true: 

0  ,00 


Z, Zw
r

, where w  is the component of 

vector U


along coordinate z ( 1z is any positive number).  
Thus, we have a plane deformed state when there remain 

only radial  ,ru  and circular  ,v r  components of three 

components of vector U


and normal stresses


AR
r
,  and 

tangential stress 


R  of the stress tensor components.  
The stresses are expressed with the following equations by 

means of displacements [32]:  
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Here 
  


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E ,  
 





12
E , where E  is modulus 

of elasticity and   is Poisson’s ratio.  
By virtue of the symmetry principle, finally the problem 

will be posed for quarter of circular ring 
~ : 
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2
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
rrr . Due to the plane deformation, 

there is no third dimension in   area.  
Let us write down the boundary conditions for the quarter 

of a circular ring: 
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It is implied that   kF11 ,   kF12  functions, together with 

their first order derivatives, and   kF21 ,   kF22 , functions, 
together with their first and second order derivatives, 
decompose into absolute and uniformly convergent Fourier 
trigonometric series. 

Let us consider one of the posed problems, e.g. problem (1), 
(3), (4a). Other problems can be solved similarly. 

III. SOLVING PROBLEM (1), (3), (4 a ) 
Let us consider a plane deformed homogeneous isotropic 
cylinder with 1r  internal radius and 2r  external radius. For 
generality, let us assume that the cylinder is loaded 
simultaneously with internal  1p  and external  2p  
stresses. Let us imply that the cylinder is quite long for stress 

z
Z to be distributed equally across the cross section and the 
influence of the cylinder bed on the radial displacement is very 
small. Besides, we consider the case when 0

z
Z . 

Mathematically, this problem is described with formulae (1), 
(2), (3), (4a). So, we must find the solution of the system of 

equilibrium equations (1) in 
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which satisfies (3), (4a) boundary conditions. We can give the 
numerical realization of the given problem based on the 
solutions obtained by using two methods (analytical solution 
obtained with a method of separation of variables and Lamé 
solution). 

A. Obtaining Analytical Solutions by Using the Method of 

Separation of Variables 

In case of absence of volume forces, a system of equilibrium 
equations written in polar coordinates is obtained as a result of 
projecting a known differential equation of the equilibrium of 
a homogeneous elastic isotropic body [33] 
  0rotrotdivgrad2  UU


 on the coordinate axes of 

polar   ,r  coordinate system. The given system of 
equilibrium equations can be written down by using functions 

v,,, uBK  as follows:  
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Theorem 1  In the class of regular functions, the general 

solution of system (5) for the considered class of boundary 

value problems of the theory of elasticity is presented by 

means of two 1  and 2 harmonic functions as follows:  
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where (see Appendix C) 
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Proof  Let us satisfy equation (5b) identically:  
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where 1  is a harmonic function. It is easy to show that 
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Let us insert (8) in (5c) and (5d). We will obtain: 
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Let us satisfy second equation of (9) identically:  
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Let us insert (10) in the first equation of (9). Following 
simple transformations, we will obtain: 
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Following some elementary transformations, we will 
finally obtain (6), i.e. theorem 1 is proved.  

After inserting (6) in (2) and doing simple transformations, 
the stress tensor components will be written down as follows:  
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  By considering condition (3), expression (7) will be 
formulated as follows: 
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After inserting (12) in (6) and (11), the following 
expressions for displacements will be obtained: 
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And the following expressions will be obtained for stresses: 
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From boundary conditions (4a), an infinite system of linear 

algebraic equations to unknown coefficients 2010   , bb , 
),2,1  ,2,1(    ,  kiBA
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Here: 
     ,212:    ,212: 21  nnnLnnnL   ,12:3  nnL 

 ,12:4  nnL  kn 2  . 
After decomposing the functions on the right side of equations 
(15) into Fourier trigonometric series, as a result of equating 
the expressions at the same trigonometric functions in both 
sides of the equations, an infinite system of linear algebraic 
equations will be obtained. The principal matrix of such a 
system is a block-diagonal one (See Fig. 1). Block 1D  is 

22 - and blocks ,3,2  , iD
i

 are 44 -dimensional 
matrixes and the relevant determinants differ from zero. 
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Fig. 1.  Plan of the principal matrix of the infinite system of 

equations (15)                           

B. Lamé problem solution 

For generality, let us assume that a thick-walled cylinder is 
loaded with internal constant1 p  and external 

constant2 p forces at the same time. In this case, both, the 
deformations and stress distribution will be symmetrical, as 
any radial section is a plane of symmetry and therefore, there 
are no tangential stresses on these sections, i.e. .0


RA

r
 

The problem to determine displacements and stresses in a 
thick-walled cylinder is known as Lamé problem, which 
gained the solution of this problem [33-35].  

 
Fig. 2.  Plan of load on the cross section of a plane deformed 

thick-walled circular cylinder 
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IV. NUMERICAL SIMULATION AND CONSIDERATION OF 
RESULTS 

The present section gives the results of the calculation of a 
thick-walled circular homogeneous isotropic body under the 

impact of internal pressure or external forces on strength. The 
strength calculation of a cylinder implies determining the 
minimum thicknesses of the walls of the thick-walled pipes of 
different materials and different diameters when the stresses in 
the body do not exceed the admissible value [34,35], i.e. when 
the pipe will not disintegrate (is not cracked). So, the 
numerical results of the boundary-value problems given here 
and relevant graphs for the quarter circular ring when (1) 
constant normal load is given on the internal boundary and the 
external boundary is free from loads, (2) constant normal load 
is given on the  external boundary and internal boundary is 
free from loads. Thus, the dependence of the strength of a 
plane deformed thick-walled circular cylinder on the thickness 
and material of the wall (elastic properties) is studied. Its 
relevant numerical solutions are obtained based on (a) the 
analytical solution obtained with the method of separation of 
variables (See formulas (13) and (14)) and (b) Lamé solution 
(See formulas (16), (17)). 
Note. As Lamé solutions are obtained for the cylinders under 
constant normal load, in order to compare the numerical 
results obtained by using analytical and numerical methods 
with the numerical results based on Lamé solutions, the 
numerical and visual realization is done for the cylinder under 
constant normal load.  
As it is known, a cylinder is called a thick-walled one, for 
which the ratio of its wall thickness with its internal diameter 

is no less that 1/20. Therefore, we must take 21 11
100 rr  . We 

will have the variation of the wall thickness, if we fix 2r  and 

confer 1r  values from range 21 11
100 rr  . The numerical 

values are obtained for the following data: 
cmcmcmr 5   ,5.2   ,5.12  , 2/100 cmkgp  , and 

26 /102 cmkgE  , 3.0  for steel, 26 /101.1 cmkgE  , 

32.0  for copper,  26 /107.0 cmkgE  , 34.0  for 

aluminum and 26 /107.0 cmkgE  , 25.0  for grey cast 
iron. 

A. Strength calculation for a thick-walled cylinder under 

the impact of internal pressure 

Let us insert     ,1
11 pF       ,01

12 F      ,02
11 F  

   02
12 F  in formulas (15). We will obtain the following 

system of equations in relation to 10b , 20b , 
k
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Here: 
     ,212:      ,212: 21  nnnLnnnL   

 ,12:3  nnL      ,12:4  nnL   kn 2  .  
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After inserting expression (18) in equations (13) and (14), 
the following expressions will be obtained:  
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Displacements and stresses at any point of the considered 
area are obtained from equations (19) and (20).  

If in Lamé solutions, in (16), (17), we take 
0     , 21  ppp , then expressions (16), (17) will be given as 

(19) and (20).  
By using (16), (17) formulas, or (19) and (20) formulas, we 

obtain the minimum wall thickness of a circular steel, copper, 
aluminum and grey cast iron rings (i.e. of a circular cylinder 
wall), at which the stresses produced in the body do not exceed 
admissible values, when r2=1,5; 2,5; 5 cm. The obtained 
numerical values are presented in table 1. 

TABIE I. Minimum admissible thicknesses of a cylinder wall 
at which the stresses produced in the cylinders of different 
materials and diameters do not exceed admissible values 
(internal load) 

Material 

Minimum admissible wall 
thickness (r2-r1) E, 

Kg/cm2  

Admiss
ible 
stress, 
Kg/cm2 

r2=1,5cm r2=2,5cm r2=5cm 

Steel 0.1813636 0.3022727 0.6545455 2106 0.3 713.801 
Copper 0.2263636 0.3772727 0.7545455 1.1106 0.32 611.830 

Aluminum 0.2713636 0.4522727 0.8545455 0.7106 0.34 509.858 
Grey 
cast 
iron 

0.2713636 0.4522727 0.8545455 0.7106 0.25 509.858 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Shearing stresses


A along the radii of the walls of steel, 
copper, aluminum and grey iron circular pipes when the 

thickness of each wall is approximately: a) 0,136 cm, b) 0, 316 
cm, c) 0,541 cm and d) 0,766 cm ( 5,12 r  and internal 

pressure) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.   Normal stresses
r

R along the radii of  the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,136 cm, b) 0, 316 

cm, c) 0,541 cm and d) 0,766 cm ( 5,12 r and internal 
pressure) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Normal displacements u along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,136 cm, b) 0, 316 

cm, c) 0,541 cm and d) 0,766 cm ( 5,12 r and internal 
pressure) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.6. Shearing stresses 


A along the radii of the walls of steel, 
copper, aluminum and grey iron circular pipes when the 

thickness of each wall is approximately: a) 0,227 cm, b) 0, 527 
cm, c) 0,902 cm and d) 1,277 cm ( 5,22 r and internal  

pressure) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.7. Normal stresses
r

R along the radii of the walls of steel, 
copper, aluminum and grey iron circular pipes when the 

thickness of each wall is approximately: a) 0,227 cm, b) 0, 527 
cm, c) 0,902 cm and d) 1,277 cm ( 5,22 r and internal  

pressure) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8.  Normal displacements u along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,227 cm, b) 0, 527 

cm, c) 0,902cm and d) 1,277cm ( 5,22 r and internal  
pressure) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9.   Shearing stresses 


A along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,454 cm, b) 0, 854 
cm, c) 1,354 cm and d) 1,854 cm ( 52 r  and internal pressure) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10.   Normal stresses
r

R along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,454 cm, b) 0, 854 
cm, c) 1,354 cm and d) 1,854 cm ( 52 r  and internal pressure) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11.  Normal displacements u along the radii of the walls 
of steel, copper, aluminum and grey iron circular pipes when 

the thickness of each wall is approximately: a) 0,454 cm, b) 0, 
854 cm, c) 1,354 cm and d) 1,854 cm ( 52 r  and internal 

pressure) 
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B. Strength calculation of a cylinder under the impact of 

external forces 

Let us insert      ,01
11 F      ,01

12 F       ,2
11 pF   
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12 F  in formulas (15). We will gain the following 

system of equations to 10b , 20b , 
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where:   ,212:1  nnnL     ,212:2  nnnL    

 ,12:3  nnL      ,12:4  nnL   kn 2  . 
From here: 
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After inserting expression (21) in equations (13) and (14), 
the following expressions are obtained:  
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Displacements and stresses at any point of the considered 
area are obtained from equations (22) and (23).  

If we take ppp  21      ,0  in (16), (17), then expressions 
(16), (17) will be given as (22) and (23). 

By using (16), (17) formulas, or formulas (22) and (23), we 
obtain the minimum wall thickness of a circular steel, copper, 
aluminum and grey cast iron ring, at which the stresses 
produced in the body do not exceed the admissible value, 
when 5  ,5.2  ,5.12 r . The obtained numerical values are 
presented in table 2. 

TABLE II. Minimum admissible thickness of a cylinder wall 
at which the stresses produced in the cylinders of different 
materials and diameters do not exceed admissible values 
(external load) 

Material 

Minimum admissible wall thickness 
(r2-r1), cm E, 

Kg/cm2  

Admiss
ible 
stress, 
Kg/cm2 

r2=1.5cm r2=2.5cm r2=5cm 

Steel 0.2263636 0.3772727 0.7545455 2106 0.3 713.801 

Copper 0.2713636 0.4522727 0.8545455 1.1106 0.32 611.830 
Aluminum 0.3163636 0.5272727 1.054545 0.7106 0.34 509.858 
Grey cast 
iron 

0.3163636 0.5272727 1.054545 0.7106 0.25 509.858 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 12.   Shearing stresses 


A along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,136 cm, b) 0, 316 

cm, c) 0,541 cm and d) 0,766 cm ( 5,12 r   and external 
pressure) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13   Normal stresses 
r

R along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,136 cm, b) 0, 316 

cm, c) 0,541 cm and d) 0,766 cm ( 5,12 r  and external 
pressure) 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 14  Normal displacements u along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,136 cm, b) 0, 316 

cm, c) 0,541 cm and d) 0,766 cm ( 5,12 r   and external 
pressure) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15   Shearing stresses 


A along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,227 cm, b) 0, 527 

cm, c) 0,902 cm and d) 1,277 cm ( 5,22 r  and external 
pressure) 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 16   Normal stresses 
r

R along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,227 cm, b) 0, 527 

cm, c) 0,902 cm and d) 1,277 cm ( 5,22 r  and external 
pressure) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 17   Normal Displacements u along the radii of the walls 
of steel, copper, aluminum and grey iron circular pipes when 

the thickness of each wall is approximately: a) 0,227 cm, b) 0, 
527 cm, c) 0,902 cm and d) 1,277 cm ( 5,22 r and external 

pressure) 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 18    Shearing stresses 


A along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,454 cm, b) 0, 854 

cm, c) 1,354 cm and d) 1,854 cm ( 52 r  and external 
pressure) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 19   Normal stresses 
r

R along the radii of the walls of 
steel, copper, aluminum and grey iron circular pipes when the 
thickness of each wall is approximately: a) 0,454 cm, b) 0, 854 
cm, c) 1,354 cm and d) 1,854 cm ( 52 r and external pressure) 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Fig. 20   Normal displacements u along the radii of the walls 
of steel, copper, aluminum and grey iron circular pipes when 

the thickness of each wall is approximately: a) 0,454 cm, b) 0, 
854 cm, c) 1,354 cm and d) 1,854 cm ( 52 r and external 

pressure) 

C. Consideration of results 
As it was expected and as the tables show, the minimum 
admissible wall thickness of a steel pipe (cylinder) is less than 
that of a copper pipe, while the minimum admissible wall 
thickness of a copper pipe is even less than that of an 
aluminum pipe. As the Young modulus values for aluminum 
and grey cast iron are the same, the minimum admissible 
thicknesses of their walls are also the same. It should also be 
noted that the greater the pipe diameter is, the more the 
minimum admissible wall thickness is.  

The tables show the minimum thicknesses of a ring 
(cylinder wall), when the stresses produced in the pipe of 
different materials (steel, copper, aluminum and grey cast iron) 
and different diameters (3 cm, 5 cm and 10 cm) do not exceed 
the relevant admissible values, when (1) constant normal stress 
is  applied to the internal boundary of a ring and the external 
boundary is free from stresses (Table 1), or (2) constant 
normal stress is applied to the external boundary and the 
internal boundary is free from stress (Table 2). These tables 
show that the minimum admissible pipe wall thickness with the 
loaded internal boundary is less than with the loaded external 
boundary.  
Normal and shearing stresses and normal displacements along 
the radius in different-thickness walls of steel, copper, 
aluminum and grey iron pipes under the influence of internal 
pressures are given in Fig. 4 – Fig 10 and external pressures 
are given in Fig. 11 – Fig. 18. The obtained numerical results 
and relevant graphs give the following picture: (a) the 
pressures and displacements decrease as the wall thickness 
increases, and (b) in the case considered in the given article 
(i.e. under the permanent normal load), the pressures do not 
depend on the material (elastic properties) what is also seen 
from the formulas, in particular, see (17), while greatest 
displacements are seen with grey iron pipes and the smallest 
ones are seen with aluminum pipes, (c) normal displacements 
are greater in case of external pressure than with internal 

pressure, (d) in case of internal pressure, shearing stresses 
have a positive direction (positive numerical value), while in 
case of external pressure, they have a negative direction 
(negative value). 

V. CONCLUSION 
In Systems Theory, the Mathematical and numerical 
simulation of strength of thick-wall pipe by using static elastic 
problems is an important problem and has attracted the 
attention of many researches, academicians and practitioners. 
The principle results presented in the present work can be 
formulated as follows:  

 The strength of quite a long homogeneous isotropic 
thick-walled circular pipe (cylinder) under the impact 
of external forces (internal or external pressure) by 
using the problems of statics of the theory of 
elasticity is studied. Plane deformation is considered.  

 Mathematical and numerical modeling is provided to 
study the strength of a thick-walled circular pipe 
under the impact of external forces (internal or 
external pressure) by using the problems of statics of 
the theory of elasticity. 

 The problems of statics of the theory of elasticity are 
set and solved in the polar coordinate system. 

 An analytical solution is obtained by using the method 
of separation of variables, which is presented as two 
harmonic functions.  

 Some numerical results are given and considered and 
graphs of normal and shearing stresses and normal 
displacements along the radii in the walls with 
different thicknesses of steel, copper, aluminum and 
grey iron pipes under the influence of internal and 
external pressures are drafted. 

 The minimum wall thicknesses of the pipes of different 
materials (steel, copper, aluminum and grey cast iron 
namely) and diameters (3 cm, 5 cm and 10 cm 
namely), when the values of stresses originated in 
them do not exceed the admissible values, are 
identified.  

A cylindrical vessel under the impact of stress is often used 
as a component in such branches of industry as chemical, 
military and oil industries and water and nuclear power plants. 
These components are often subject to a complex load, such as 
twisting, pressure, temperature, etc. The circular cylinders 
(pipes) are also widely used in building, machine building, etc. 
Therefore, the study of the deflected mode of the cylindrical 
bodies is topical and so, in my opinion, setting the problems 
considered in the present work and the method of their 
solution is interesting in a practical view. 
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APPENDIX A 
Theorem 2  If function   is harmonic, then  

r
r ,  is a 

harmonic function.  

Proof   Let us assume that 0 . We must prove that 

  0,  rr  (  .  (is a Laplace operator), i.e. 

  0: ,  
r

rL . So, we must prove that:  

.0113 ,,,, 



rrrrrrr

rr
rL  

As 0 , then   0,  rr  ; 011

,
,2,, 









r

rrr
rr

r


 . 

i.e. 

.0211
,2,,,, 



rrr

r
rrrrrrr

                   (A.1) 

 Let us write down operator L  as follows: 

.022

1221

,2,2

,,,,,,










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rL
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          (A.2) 

The underlined members in (A.2), by the virtue of (A.1), 
give zero, while other three members give a Laplace operator, 
which equals to zero. Thus, 0L , i.e. 
    0,,  

rr rr , i.e.  
r

r ,  is harmonic. Thus, the 
theorem is proved. 

APPENDIX B: PROVING SOME FORMULAS 
Let us assume that   is a harmonic function, i.e. 0 . It is 

easy to prove that:  
1)    

rrrr
rrr

,,1
2

,1   ; 
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Proof 
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The sum of the underlined members is a Laplace operator in a 
polar coordinate system and as   is a harmonic function, it 
equals to zero.  

3) 

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By considering this, we will gain: 
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This is what we wanted to prove. 

APPENDIX C: SOLVING LAPLACE EQUATIONS IN A POLAR 
COORDINATE SYSTEM 

Let us solve the following equation:  

.011
,2,, 



rr

rrr
                             (C.1) 

Let us try to find the solution as follows: 
    ArR .                                  (C.2) 

After inserting (C.2) in (C.1), we will obtain: 

02 








A

A

R

R
r

R

R
r . 

Let us consider two cases: 
1)  

22 k
R

R
r

R

R
r 





,  2k
A

A



, k  is a real number (the 

imaginary case is deduced to the real one). 
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    (C.3) 

If doing operation  
r

r ,  for (C.3), the generality will not be 
violated. If we do the same operation for the first summand of 
expression  , we will gain the summand of the same type, as 
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the differentiation with r  will not change its type. As a result 
of differentiating the second summand with r  (the expression 
in brackets does not depend on r )  rk lnsin  and  rk lncos  

yield  rk
r

k lncos  and  rk
r

k lnsin , consequently, r  will be 

cancelled, k  is constant and will be included in the 
coefficients. As for other summands, they will be obtained by 
operation  , while  

r
r ,.  will give 0a  and 0b , which will 

be united with 0c  and 0d . Thus, neither of the members in 
expression   is lost or changes its type. So, if we do operation 

 
r

r , for this sum, the generality will be maintained. 
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